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Abstract Comparative molecular surface analysis (CoMSA)
with robust IVE-PLS variable elimination if tested for the
benchmark CBG steroid series provides highly predictive RI
3D QSAR models, but failed however to model the activity of
sulforaphane (SP) activators of quinone reductase. The
application of the SP poses obtained from multipose molecular
docking to model the RD IVE-PLS CoMSA resulted in a
predictive form. This model indicated lipophilic potential as the
activity determinant. The individual molecular surface areas of
the highest contribution to the SP activity was identified and
visualized by CoMSA contour plots.
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Introduction

Quantitative structure activity relationship (QSAR) is an
approachmapping chemical structure to properties that should
convert molecular data to drugs by property prediction and
design. A significant development can be observed along the
last decades in this method. A traditional Hansch analysis
based on the logP and Hammett constant has been supple-
mented with 3D QSAR methods that can account for 3D
structure, conformational dynamics and finally receptor data
and solvation effects. However modeling interactions of
chemical molecules in biological systems still provides highly

noisy data, which makes activity predictions a roulette risk.
This can be classified as the data, superimposition, molecular
similarity, conformational, and molecular recognition noise
[1]. Molecular recognition uncertainty in traditional receptor
independent (RI) m-QSAR cannot be removed but by the
inclusion of the receptor data. However, modeling ligand-
receptor interactions is a complex computational problem,
which limited the development of the receptor dependent
(RD) m-QSAR. It is just recently that RD m-QSAR methods
became popular [2]. The idea started as early as the 90’ from
the application of the CoMFA – like molecular interaction
force filed (MIF) and the GRID method to investigate the
binding pockets of the receptors [3]. Further development
resulted in the RD 4D, 5D and 6D QSAR methods or
membrane interactions (MI) QSAR [4–8].

In the majority of applications 3D QSAR describes the RI
model sampled from the single conformation representations.
A 3D QSAR query in the Pubmed database provides 742 hits
(CoMFA - 772; CoMFA AND 3D QSAR 407). The latter
numbers illustrate the predominance of the CoMFA concept in
the ligand based multidimensional QSAR [2]. It is however
not only an advantage of the method but the availability of
the CoMFA software that decides that CoMFA outnumbers
other approaches. This has limited both the evaluation and
use of other QSAR methodologies [8] and a number of other
multidimensional descriptors can be used for modeling RI
and RD 3D QSARs [2].

Human NAD(P)H quinone oxidoreductase is an enzyme
overexpressed in a variety of solid tumors, which makes it
an interesting target for anticancer drugs. Quinone oxido-
reductase plays a protective antioxidant role being also
capable of bioactivation of a variety of prodrugs to their
cytotoxic species. Several novel inhibitor series of this
enzyme were reported recently [9]. A virtual screening
among the more than 700,000 molecule compound library

J Mol Model (2009) 15:41–51
DOI 10.1007/s00894-008-0373-1

T. Magdziarz : P. Mazur : J. Polanski (*)
Department of Organic Chemistry, Institute of Chemistry,
University of Silesia,
PL-40–006 Katowice, Poland
e-mail: polanski@us.edu.pl
URL: http://prac.us.edu.pl/∼zchorg

http://prac.us.edu.pl/�zchorg


was performed to identify the potential ligand of 1D4A
reductase. This docking approach resulted in the design of
novel active structures; however, no correlation between the
calculated and measured binding energies for the analyzed
compounds was observed [10]. Sulforaphanes (SPs) are
compounds activating quinone reductase enzyme closely as
the second phase of a detoxification. Thus, SPs can be
applied as chemopreventive agents and a number of
investigations have been reported for these compounds.
However, only few studies reported structure activity
relationships for the series, which indicates that sulforaphane
itself is the most potent inducer [11]. Previous experimental
studies failed to indicate the molecular basis for the SP
activatory activity [12, 13], which inspired us to investigate
this effect in silico using molecular docking. Although we
failed to correlate the SP activity to the docking scoring
functions, the application of the activator-enzyme complex
for the simulation of the reductase inhibition indicated an
interesting enhancement mechanism in which a formation of
the SP- reductase complex modifies binding cavity of the
enzyme exposing the TYR 128 residue for a further substrate
binding [14], which is a rare example of the manipulation of
the drug-enzyme complex for a simulation of a further
enzyme behavior. Similar modeling study has been described
for HIV-1 integrase [15].

We have described previously the comparative molecular
surface analysis (CoMSA) [16–24] which was then supported
by the robust variable elimination method [25]. This was
however used only in the traditional RI mode. In the present
paper we attempt to extend the application of CoMSA
method with iterative variable elimination (IVE-PLS) to the
RD modeling of the activatory activity of the series of SP
compounds interacting with quinone oxidoreductase. Since,
we modified here the original IVE-PLS method [16, 20] we
also tested the performance of the method during the
application to the benchmark CBG steroid series.

Data sets and methodology

Data sets

All compounds examined in the present study were
reported previously in the literature. The CBG steroid
benchmark series data, molecules s1-s31, were reported
according to reference [17]. The SP data, molecules r1-r10,
were extracted form refs. [11–13, 26]. The data is presented
in Tables 1 and 2, respectively.

Molecular modeling and docking

Molecular modeling was conducted using the Sybyl/Tripos
or CCG MOE software packages running on an Intel

Pentium based machine with the GNU/Linux CentOS
operating system. The initial geometry of CBG steroids
was optimized using standard Tripos force field (POWELL
method) with 0.005 kcal/mol energy gradient convergence
criterion and a distant dependent dielectric constant. Partial
atomic charges were calculated using the Gasteiger-Marsili
method implemented in Sybyl. The set was superimposed
by MATCH 3D program and as a superimposition template
compounds s6 were used. SPs were modeled using the
MOE software. The initial geometry was optimized using
the MMFF94x force field with 0.01 kcal/mol gradient
convergence criterion and the force field partial charges
were calculated.

Alternatively, compounds r1-r10 were modeled within
the receptor structure 1D4A PDB [27] using the MOE
docking protocol with the Alpha Triangle placement option
and the London dG scoring function. Missing hydrogen
atoms were added to the receptor structure and a titration to
the protonation state at pH 7.4 was performed. The
potential docking sites were identified using the Site Finder
procedure and the four mostly populated sites were used for
further docking. For each ligand 100 poses were saved
yielding overall 1000 poses, out of which 956 poses were
placed in the first potential site. Poses yielding the highest
score were chosen for further CoMSA analyses - one pose
per ligand. Molecule r4 for which the first three poses of
the highest scoring have been docked apart from the
bundle, was modeled in QSAR in the forth pose.

Comparative molecular surface analysis

Molecular shape descriptors in present work were calculat-
ed by grid formalism of the s-CoMSA method. Thus, each
3D molecular representation is placed in its own virtual
cubic grid and molecular surface is calculated, respectively.
The electrostatic (ep) and/or the lipophilic (lipo) potentials
are calculated for the points randomly sampled on the
molecular surface and a mean value of the potential
corresponding to the respective points found in each grid
cell (or other value) is used to describe this cell. Calculated
values are unfolded into vectors and vectors describing all
molecules of the series are aligned in to a matrix. Columns
corresponding to grid cells that are empty for all molecules
in the series are eliminated. The resulting matrix is used for
further calculations using the PLS and IVE-PLS methods.

Iterative variable elimination IVE-PLS method

IVE-PLS method is an iterative extension of the uninfor-
mative variable elimination (UVE-PLS) algorithm original-
ly proposed by Centner et al. [28] as a possible
improvement of the PLS procedure. The main idea of
UVE-PLS is to reduce the number of the redundant
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Table 1 Steroid structures and
the CBG affinity data [20]

a 5-α
b 5-β
c H instead Me at the C10
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SA SB SC

SD SE SF  

Nr S X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 CBG 

s1 SA           -6.279 

s2 SB OH H Ha H OH H     -5.000 

s3 SE OH OH H        -5.000 

s4 SC =O H =O    H H H H -5.763 

s5 SB H OH Ha H =O      -5.613 

s6 SC =O OH COCH2OH H   H H H H -7.881 

s7 SC =O OH COCH2OH OH   H H H H -7.881 

s8 SC =O =O COCH2OH OH    H H H -6.892 

s9 SE OH =O         -5.000 

s10 SC =O H COCH2OH H   H H H H -7.653 

s11 SC =O H COCH2OH OH   H H H H -7.881 

s12 SB =O  Ha H OH H     -5.919 

s13 SD OH OH H H       -5.000 

s14 SD OH OH H OH       -5.000 

s15 SD OH =O  H       -5.000 

s16 SB H OH Hb H =O      -5.255 

s17 SE OH COMe H        -5.255 

s18 SE OH COMe OH        -5.000 

s19 SC =O H COMe H   H H H H -7.380 

s20 SC =O H COMe OH   H H H H -7.740 

s21 SC =O H OH H   H H H H -6.724 

s22 SF =O OH COCH2OH OH       -7.512 

s23 SC =O OH COCH2OCOMe OH   H H H H -7.553 

s24 SC =O =O COMe H    H H H -6.779 

s25 SC =O H COCH2OH H   OH H H H -7.200 

s26 SCc =O H OH H   H H H H -6.144 

s27 SC =O H COMe OH   H OH H H -6.247 

s28 SC =O H COMe H   H Me H H -7.120 

s29 SCc =O H COMe H   H H H H -6.817 

s30 SC =O OH COCH2OH OH   H H Me H -7.688 

s31 SC =O OH COCH2OH OH   H H Me F -5.797 

J Mol Model (2009) 15:41–51 43



variables included in the final model. The UVE algorithm
based on the analysis of the regression coefficients
calculated by the PLS method. The PLS method allows
presenting the relation between the Y answer and the X
predictors in a form of

Y ¼ Xb � e ð1Þ
where b is a vector of the regression coefficients and e is
the vector of the errors. Thus, the UVE algorithm analyzes
a value of t called stability that is calculated on the basis of
the b coefficients of the PLS Eq. 1. The t score for the
variables is given by Eq 2:

t ¼ mean Bð Þ=std Bð Þ ð2Þ
where B is a matrix of b coefficients obtained during the
leave-one-out cross-validation procedure and mean and std
are mean and standard deviation values, respectively.

Then, only the variables of the “relative” high t-value are
included in the final PLS model. In order to estimate the
cutoff level, the artificial random number noise is created

(the level of the noise is 10–10 of the original variable order)
and added as additional columns into the matrix of the
original variables.

We have modified this procedure replacing a single step
procedure with the iterative algorithm, which is based on
the absolute value abs(mean(B)/std(B)) as a criterion to
identify variables to be eliminated. To distinguish this
procedure, we named this method as the iterative variable
elimination (IVE-PLS). This procedure includes the fol-
lowing steps:

1. Standard PLS analysis applied to analyze the matrices
yielded from the s-CoMSA procedure with the leave-
one-out cross-validation to estimate the performance of
the PLS model (q2),

2. Elimination of the matrix column of the lowest
abs(mean(B)/std(B)) value,

3. Standard PLS analysis of the new matrix without the
column eliminated in step 2,

4. Iterative repetition of the steps 1–3 to maximize the
LOO CV q2 parameter.

The detailed procedure for several IVE-PLS versions
was described in ref. [25] where several robust measures of
the mean operator in criterion 2 were tested. In the current
version we applied the robust IVE version which defines
the stability criterion by equation:

t ¼ median Bð Þ=iqr Bð Þ ð3Þ
where median and iqr are median value and interquartile
range respectively.

Unlike in standard PLS, in this method a number of PLS
components are usually truncated at an arbitrarily decided
level Amax that was always lower or equal to an optimal
number of latent PLS variables. Our experience indicates
that such a truncation allows one to obtain highly predictive
models. The detailed study on the influence of the number
of the truncation extent on the model quality can be found

Table 2 Sulforaphanes structures and reductase activation rate [11–
13, 26]

Nr/
name

Structure Activation
rate
A [μM/l]

Activation
rate
pA (-log A)

r1 CH3(CH2)5NCS 15 [11] -1.1761
r2 CH3(S=O)(CH2)4NCS 0.2 [11] 0.6989
r3 CH3(C=O)(CH2)NCS 0.2 [11] 0.6989
r4 CH3(CH2)3(C=O)

(CH2)4NCS
2.0 [11] -0.3010

r5 CH3(S=O)(CH2)3NCS 0.4 [11, 26] 0.3971
r6 CH3S(C=O)(CH2)4NCS 2.8 [26] -0.4472
r7 CH3O(C=O)(CH2)4NCS 2.8 [26] -0.4472
r8 N≡C(CH2)4NCS 2.0 [26] -0.3010
r9 CH3(S=O)(CH2)5NCS 1.6 [12, 13] -0.2041
r10 CH3(C=O)(CH2)4NCS 0.5 [12, 13] 0.3010

Fig. 1 The variable elimination IVE-PLS profile in the s-CoMSA modeling of the CBG steroid series by maximization of q2cv for the training set
s1-s21 (a) accompanied by the r2test (b) and SDEP (c) profiles for the test set s22-s31, details in text
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in reference [25]. The performance of the IVE-PLS method
without component truncation has been recently compared
by Grohmann to the performances of other robust PLS
methods [29].

We used the standard cross-validated PLS performances,
namely, q2cv, r

2
test and SDEP to measure the quality of the

PLS models [25]. Moreover, in the so called Y-randomiza-
tion procedure we further validated model quality. Thus, the
activity (Y answer) was randomly permuted in a series of
experiments and the whole IVE-PLS was repeated to
compare the resulted q2cv values of the pseudomodels with
this of the real model. In particular, we simulated here
1000 Y-randomized pseudomodels.

Drug design toolbox

The UVE and IVE procedures were programmed within the
MATLAB environment (MATLAB) and were included in
the drug design toolbox (DDT) developed in our group
[30]. DDT consists of two software layers. The first layer
performs all calculations and basic input – output oper-
ations including importing and exporting molecular data.
All first layer functions can be accessed by MATLAB
command line and can be easily linked to other MATLAB
functions and scripts. The second layer is a graphical user
interface. All calculations run by the second layer are
accomplished by appropriate first layer functions which can
be used as a stand alone command line toolbox. The
software is capable of importing and exporting molecular

data from/to mol2 Sybyl [31] and ctx CACTVS [32] files.
However, during calculations DDT operates its own
molecular format IQF (internal QSAR format). Similarly,
data resulted form QSAR modeling are stored in DDT
format, namely UQS (universal QSAR structure). Both
formats, IQF and UQS, are XML based and can be saved as
plain text files or in MATLAB binary format. Moreover, in
order to organize and simplify batch operations on huge
molecular data DDT can create special directories QDB
(QSAR data base) containing molecular series in IQF
formats. Such directories can be accessed by DDT batch
routines speeding up operations on huge molecular series.

The toolbox allows a generation of the van der Waals
molecular surfaces and a calculation of the electrostatic
potential. However, partial charges have to be calculated
using a third party software. There is the ALOGP [33]
method implemented and the lipophilic potential can also
be calculated using the Audry method [34].

Molecular descriptors can be calculated by grid (s-
CoMSA) and SOM (SOM-CoMSA) versions, though, the
freeware Kohonen SOM toolbox [35] is required to use the
latter method. DDT makes available several data prepro-
cessing protocols. Quantitative modeling can be realized by
PCR and PLS methods. Both UVE-PLS and the several
versions of IVE-PLS were implemented in DDT. A variety
of coloring maps are available for molecular visualization
and displaying CoMSA contour plots, as described in
previous publications [1, 16, 36, 37]. DDT can be down-
loaded as a freeware from our internet site [30].

Table 3 The performances of RI CoMSA modeling of the CBG steroid series

Entry Training /Test set Amax
q2cv SDEP r2test IVE-PLS Number of variables Initial/Final

q2cv SDEP r2test

1 s1-s21/s22-s31 1 0.92 0.75 -0.49 0.93 0.75 -0.47 919/593
2 s1-s12 s23–31 /s13-s22 1 0.68 0.47 0.83 0.71 0.41 0.87 919/245

Fig. 2 The variable elimination IVE-PLS profile in the s-CoMSA modeling of the CBG steroid series by maximization of q2cv for the training set
s1-s12 and s23-s31 (a) accompanied by the r2test (b) and SDEP (c) profiles for the test set s13-s22, details in text
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Result and discussion

RI s-CoMSA for the steroid benchmark series

The original data of the series of steroids complexing
corticosteroid binding globulin (CBG) come from publica-
tions by Mickelson et al. [38], Westphal [39], and Dunn et
al. [40]. Due to the rigid steroid skeleton, this series is used
in molecular design as a benchmark measuring the
performance of new methods. However, a number of early
publications analyzing these series include several errors
within the molecular structures [17, 24]. This was corrected
by Wagener at al. [41].

As reported in previous publications we distributed the
CBG steroids into the training s1-s21 and test sets s22-s31.
In Fig. 1 we presented the q2cv profile during IVE-PLS
s-CoMSA modeling with a number of PLS components

Fig. 3 The s-CoMSA contour plots for the CBG steroids s6 – high
affinity (a) and s13 – low affinity (b). Colors code a contribution of
molecular surface ep potential into a final IVE-PLS model. Blue
increases while red and yellow decreases the activity value. For more

clear illustration the additional data filter is applied to eliminate
variables of the lowest contribution, i.e., only 50% of the highest
contribution variables surviving IVE-PLS are shown

Table 4 The performances of RI and RD CoMSA modeling of the
reductase activation rate by SP compounds

Entry Model Amax
q2cv q2cv

a
Number of
variables
Initial/Final

1 RI s-CoMSA ep 3 -1.15 -0.72 671/316
2 RI s-CoMSA lipo 3 0.16 0.49 671/180
3 RD s-CoMSA ep 1 -0.73 -0.15 1074/188
4 RD s-CoMSA ep 2 -0.73 -0.01 1074/39
5 RD s-CoMSA ep 3 -0.73 0.01 1074/41
6 RD s-CoMSA lipo 1 0.33 0.66 1074/326
7 RD s-CoMSA lipo 2 0.33 0.67 1074/538
8 RD s-CoMSA lipo 3 0.33 0.77 1074/404

a with IVE-PLS

Fig. 4 The Y-randomization pseudomodels of the IVE-PLS RI s-
CoMSA of the SP series: Table 4 entry 2. The red dot indicates the q2cv
values for the correct activity model
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Amax truncated at 1 or 2, respectively. The method allowed
us to obtain a highly predictive model with q2cv amounting
to 0.93 (for molecules s1-s21) for Amax=1 with 593 out of
919 (ca. 65%) variables surviving the IVE-PLS data

elimination – see Table 3. This compares advantageously,
for example, to the Quasar model with q2cv amounting to
0.90 [42]. However, the predictive ability for the test set
molecules s22-s31 r2test amounts to -0.47. This indicates that
the model does not reach the predictive values for the test
set. The relationship plotted in Fig. 1b can be transformed
into the standard deviation of external predictions (SDEP)
error, which is shown in Fig. 1c. This reveals that the initial
SDEP value amounts to 0.75, which falls within the range
of the values described in the majority of publications,
where SDEP ranges from 0.7 to 0.8 [16, 17]. In particular
this significantly outperforms the CoMFA SDEP taking a
value of 0.837 [43]. Moreover, the robust CoMSA
architecture allowed the SDEP to decrease after IVE
variable elimination, i.e., at its minimal level to a value of
ca. 0.5. This decrease is however accompanied by the
decrease in the q2cv rate to a value of ca. 0.6.

The analysis discussed above illustrates a fact that the
distribution of the CBG within training and test sets that can
usually be found in the literature, is non-representative for the
analyzed structures and provides non-predictive models for
the test set compounds, which was first realized by Kubinyi.
Therefore, he recommended another training/test set distribu-
tion, namely, test set: s1-s12 and s23-s31/training set: s13-s22
[17]. After such a correction we obtained the IVE-PLS
CoMSA model described by q2cv amounting to 0.71 (Amax=
1) for molecules s1-s12 and s23-s31, and r2test ¼ 0:87 or

Fig. 5 SP compounds in the
molecular superimposition
poses resulted by docking sim-
ulation from the reductase 1DA4

Fig. 6 The variable elimination IVE-PLS profile in the s-CoMSA
modeling of the SP series. Colors code a value of Amax: blue 1; green
2 and red 3, respectively

J Mol Model (2009) 15:41–51 47



SDEP=0.41 for molecules s13-s22 with 27% variables
surviving the IVE-PLS elimination – see Table 3. The
detailed IVE-PLS CoMSA profiles are shown in Fig. 2. In
particular the q2cv of 0.71 significantly outperforms this of the
CoMFA q2cv that amounts to 0.454 [17].

However, to compare the models with those previously
reported in the literature we plotted in Fig. 3 these variables

that survive IVE-PLS with standard training/test steroid
s1-s21/s22-s31 distribution. This indicates the surface areas
deciding the activity of the CBG series. Generally, the
molecular surface sectors complies with those reported to
be important in the previous publications [16]. This
indicates the A and D steroid rings and substitutions as
those determining the activity – see Fig. 3.

Fig. 7 The Y-randomization pseudomodels of the IVE-PLS s-CoMSA of the SP series: Table 4 entries 6 (a), 7 (b) and 8 (c), respectively. The red
dots indicate the q2cv values for the correct activity models

Fig. 8 The RD s-CoMSA contour plots for the SP series r2 and r3 –
high affinity (a), r1 – low affinity (b). The reductase residues Tyr 128,
Gly 149, Gly 150, Met 154, Phe 232, Phe 236 are shown in gray.
Colors code a contribution of molecular surface lipo potential into a

final IVE-PLS model. Blue decreases while red increases the activity
value. For more clear illustration the additional data filter is applied to
eliminate variables of the lowest contribution, i.e., only 50% of the
variables having the highest contribution are displayed

48 J Mol Model (2009) 15:41–51



RI and RD CoMSA for chemopreventive sulforaphanes

Irrespective of the tested receptor independent superimpo-
sition modes, our efforts to model the RI s-CoMSA failed,
as shown in Table 4 – entries 1 and 2. Only non-predictive
models can be obtained and a value of 0.16 was the
maximal q2cv performance value which, however, improves
in IVE-PLS to a value of 0.49. A value of 0.49 is not high
enough to consider the model predictable. Since only ten
molecules were available in this study we performed
Y-randomization test to validate model quality, i.e., the Y
answers were permutated to take the random values [44].
This indicates a large chance of model overfitting, as shown
in Fig. 4. Thus, the q2cv parameter calculated for the model
with correct activity takes a value of 0.49 which is located
in the middle of the q2cv range of the Y-randomized
pseudomodels that oscillates from -0.60 to 0.87. Further
improvement of the model cannot be achieved. Thus, we
separated the SP compounds from the reductase receptor
data in the molecular superimposition poses determined by
docking simulation, as shown in Fig. 5 and use this for
modeling the RD s-COMSA. The results are shown in
Table 4, entries 3 to 8 and Fig. 6, 7, and 8. In Fig. 6 we
illustrated the IVE-PLS s-CoMSA profiles with different
Amax levels ranging from 1 to 3. This shows a steady
increase of the q2cv value up to ca. 800 – 1000 eliminated
variables depending upon the Amax value. In Fig. 7 we
presented histograms illustrating the results of the
Y-randomization tests. This indicated the predictive ability
of model 6 from Table 4 based on lipo for which q2cv
performance was higher than any of the q2cv parameters
calculated for the Y-randomized pseudomodels. Vice versa,
randomization does not change a low predictive ability of
the ep models (data not shown here). Thus, our study
indicated that lipohilic potential determines binding affinity
of the SPs to the quinone reductase.

It is worth mentioning, that IVE-PLS procedure truncat-
ed to a single component (Amax=1) allowed us to improve
the initial model from q2cv ¼ 0:33 to a final value of 0.66.
Figure 6 illustrates a profile of q2cv during the IVE-PLS data
elimination process. Although, the higher number of the
Amax allowed for the larger increase of the q2cv perform-
ances, the randomization indicates higher chances of model
overfitting, as compared in Fig. 7, which is an important
hint for the IVE-PLS Amax protocol.

In Fig. 8 we illustrated the CoMSA contour plots which
reveal the areas determining the high and low SP activatory
activity. Thus, high affinity r2 and r3 compounds (Fig. 8a)
are compared with the low activity molecule r1 (Fig. 8b).
Red surface areas increases the activity while blue tends to
decrease it. The most important determinants of activity
appear in the proximity of Gly 149, Gly 150, and Tyr 128
(left bottom part of Fig. 8a and b) distinguishing between

active and inactive compounds. Thus, hydrophobic inter-
actions for high activity molecules come into sight in these
locations (Fig. 8b). Vice versa, low activity analogues
indicates a completely different lipo profile in these areas,
as shown for compound r1 (Fig. 8a). The contour plots in
the proximity of Met 154 are less specific although high
lipophilic NCS functionality is not favorable in that area.
Instead the NCS group located near Phe 236 or Phe 232
seems to be advantageous for the high SP activity.

Conclusions

We described the comparative molecular surface analysis
with robust IVE-PLS variable elimination. This method is
tested for the benchmark CBG steroid series and provides
highly predictive RI models. The same method applied for
a series of SP activators of quinone reductase provided
nonpredictive RI models. However, the application of the
SP poses obtained from multipose molecular docking to
model the RD CoMSA IVE-PLS resulted in a predictive
form. Moreover, this indicated lipophilic potential as the
activity determinant. The individual molecular surface areas
of the highest contribution to the activatory activity was
identified and visualized by CoMSA contour plots which
reveal the areas determining compounds’ affinity. The
important hints can be concluded from the q2cv profiles
during variable elimination in IVE-PLS. Both for the CBG
steroid series and SP compounds the predictive ability of
the models depends upon the PLS latent variable truncation
level Amax. Thus, the lower this value is, the higher the
predictive ability of the model in the test set or a better
Y-randomization ratio will be observed.

Acknowledgments The authors thank Professor Johann Gasteiger of
the University of Erlangen-Nuremberg, BRD for facilitating access to
the MATCH 3D program. The financial support of the KBN Warsaw
under grant no. R0504303 is gratefully acknowledged.

References

1. Polanski J, Bak A, Gieleciak R, Magdziarz T (2006) Modeling
Robust QSAR. J Chem Inf Model 46:2310–2318. doi:10.1021/
ci050314b

2. Polanski J Receptor Dependent Multidimensional QSAR for
Modeling Drug – Receptor Interactions. Curr Med Chem sent
for publication

3. Head RD, Smythe ML, Oprea TI, Waller CL, Green SM, Marshall
GR (1996) VALIDATE: A new method for the receptor-based
prediction of binding affinities of novel ligands. J Am Chem Soc
118:3959–3969. doi:10.1021/ja9539002

4. Hopfinger AJ, Wang S, Tokarski JS, Jin B, Albuquerque M,
Madhav PJ et al (1997) Construction of 3D-QSAR Models Using
the 4D-QSAR Analysis Formalism. J Am Chem Soc 119:10509–
10524. doi:10.1021/ja9718937

J Mol Model (2009) 15:41–51 49

http://dx.doi.org/10.1021/ci050314b
http://dx.doi.org/10.1021/ci050314b
http://dx.doi.org/10.1021/ja9539002
http://dx.doi.org/10.1021/ja9718937


5. Vedani A, Briem H, Dobler M, Dollinger H, McMasters DR
(2000) Multiple-conformation and protonation-state representation
in 4D-QSAR: the neurokinin-1 receptor system. J Med Chem
43:4416–4427. doi:10.1021/jm000986n

6. Vedani A, Dobler M, Lill MA (2005) Combining protein
modeling and 6D-QSAR. Simulating the binding of structurally
diverse ligands to the estrogen receptor. J Med Chem 48:3700–
3703. doi:10.1021/jm050185q

7. Lill MA, Vedani A (2006) Combining 4D pharmacophore
generation and multidimensional QSAR: modeling ligand binding
to the bradykinin B2 receptor. J Chem Inf Model 46:2135–2145.
doi:10.1021/ci6001944

8. Esposito EX, Hopfinger AJ, Madura JD (2003) 3D- and nD-
QSAR methods. In: Gasteiger J (ed) Handbook of chemo-
informatics: from data to knowledge, vol. 4. Wiley-VCH,
Weinheim, pp 1576–1599

9. Colucci MA, Moody CJ, Couch GD (2008) Natural and synthetic
quinones and their reduction by the quinone reductase enzyme
NQO1: from synthetic organic chemistry to compounds with
anticancer potential. Org Biomol Chem 6:637–656. doi:10.1039/
b715270a

10. Nolan KA, Timson DJ, Stratford IJ, Bryce RA (2006) In silico
identification and biochemical characterization of novel inhibitors
of NQO1. Bioorg Med Chem Lett 16:6246–6254. doi:10.1016/j.
bmcl.2006.09.015

11. Posner GH, Cheon-Gyu C, Green JV, Zhang Y, Talalay P (1994)
Design and synthesis of bifunctional isotiocyanate analogs of
sulforaphane. Corelation between structure and potency as
inducers of anticarcinogenic detoxication enzymes. J Med Chem
37:170–176. doi:10.1021/jm00027a021

12. Misiewicz I, Skupińska K, Kowalska E, Lubiński J, Kasprzycka-
Guttman T (2004) Sulforaphane mediated induction of a phase 2
detoxifying enzyme NAD(P)H quinone reductase and apoptosis in
human lymphoblastoid cells. Acta Biochim Pol 51:711–721

13. Misiewicz I, Skupińska K, Kasprzycka-Guttman T (2007)
Differential response of human healthy lymphoblastoid and
CCRF-SB leukemia cells to sulphoraphane and its two analogues:
2-oxohexyl isothiocyanate and alyssin. Pharmacol Rep 59:80–87

14. Mazur P, Magdziarz T, Chilmonczyk Z, Kasprzycka-Guttman T,
Misiewicz I, Skupinska J, Polanski J (in press) Receptor
Dependent 3D QSAR model of the chemopreventive sulfora-
phanes activating oxidoreductase. Bioorg Med Chem Lett

15. Savarino A (2007) In-Silico docking of HIV-1 integrase inhibitors
reveals a novel drug type acting on an enzyme/DNA reaction
intermediate. Retrovirology 4:21. doi:10.1186/1742–4690–4–21

16. Polanski J, Gieleciak R, Magdziarz T (2004) The grid formalism
for the comparative molecular surface analysis: application to the
CoMFA benchmark steroids, azo dyes and HEPT derivatives. J
Chem Inf Comput Sci 44:1423–1435. doi:10.1021/ci049960l

17. Coats E (1998) The CoMFA steroids as a benchmark dataset for
development of 3D QSAR methods. Perspect Drug Discov Des
12/13(14):199–213. doi:10.1023/A:1017050508855

18. Anzali S, Gasteiger J, Holzgrabe U, Polanski J, Teckentrup A,
Wagener M (1998) The use of self-organizing neural networks in
drug design. Perspect Drug Discov Des 9/10(11):273–299.
doi:10.1023/A:1027276425268

19. Polanski J, Gieleciak R, Bak A (2002) The comparative molecular
surface analysis (CoMSA) - a nongrid 3D QSAR method by a
coupled neural network and PLS system: Predicting pKa values of
benzoic and alkanoic acids. J Chem Inf Comput Sci 42:184–191.
doi:10.1021/ci010031t

20. Polanski J, Gieleciak R (2003) The comparative molecular surface
analysis (CoMSA) with modified uninformative variable elimina-
tion-PLS (UVE-PLS) method: application to the steroids binding
the aromatase enzym. J Chem Inf Comput Sci 43:656–666.
doi:10.1021/ci020038q

21. Polanski J, Gieleciak R, Wyszomirski M (2003) Comparative
molecular surface analysis (CoMSA) for modeling dye-fiber
affinities of the azo and antraquinone dyes. J Chem Inf Comput
Sci 43:1754–1762. doi:10.1021/ci0340761

22. Polanski J, Gieleciak R (2003) Comparative molecular surface
analysis: a novel tool for drug design and molecular diversity
studies. Mol Divers 7:45–59. doi:10.1023/B:MODI.0000006536.
02970.f0

23. Polanski J, Gieleciak R, Bak A (2004) Probability issues in
molecular design: predictive and modeling ability in 3D-QSAR
schemes. Comb Chem High Throughput Screen 7:793–807.
doi:10.2174/1386207043328292

24. Polanski J, Walczak B (2000) The comparative molecular surface
analysis (CoMSA): a novel tool for molecular design. Comput
Chem 24:615–625. doi:10.1016/S0097–8485(00)00064–4

25. Gieleciak R, Polanski J (2007) Modeling robust QSAR. 2.
Iterative variable elimination schemes for CoMSA: application
for modeling benzoic Acid pKa values. J Chem Inf Model
47:547–556. doi:10.1021/ci600295z

26. Zhang Y, Kensler TW, Posner GH, Talalay P (1994) Anticarcino-
genic activities of sulforaphane and structurally related synthetic
norbonyl isothiocyanates. Proc Natl Acad Sci USA 91:3147–
3150. doi:10.1073/pnas.91.8.3147

27. Faig M, Bianchet MA, Talalay P, Chen S, Winski S, Ross D et al
(2000) Structures of recombinant human and mouse NAD(P)H:
quinone oxidoreductases: species comparison and structural
changes with substrate binding and release. Proc Natl Acad Sci
USA 97:3177–3182. doi:10.1073/pnas.050585797

28. Centner V, Massart DL, de Noord OE, de Jong S, Vandeginste
BMV, Sterna C (1996) Elimination of uninformative variables for
multivariate calibration. Anal Chem 68:3851–3858. doi:10.1021/
ac960321m

29. Grohmann R, Schindler T (2008) Toward robust QSPR models:
Synergistic utilization of robust regression and variable elimina-
tion. J Comput Chem 29:847–860. doi:10.1002/jcc.20831

30. Magdziarz T, Polanski J, Gieleciak R, Bak A (2008) Drug design
toolbox http://prac.us.edu.pl/∼zchorg/ddt Accessed 17 Jan 2008

31. Sybyl Computational Informatics Software for Molecular Mod-
elers http://www.tripos.com/ Accessed 17 Jun 2008

32. CORINA Generation of 3D coordinates http://www.mol-net.com/
software/corina/ Accessed 17 Jun 2008

33. Ghose A, Viswanadhan V, Wendoloski J (1998) Prediction of
hydrophobic (Lipophilic) properties of small organic molecules
using fragmental methods: an analysis of ALOGP and CLOGP
methods. J Phys Chem A 102:3762A–3772A. doi:10.1021/
jp980230o

34. Audry E, Dubost JP, Colleter JC, Dallet P (1986) A new approach
to structureactivity relations: the “Molecular Lipophilicity Poten-
tial”. J Med Chem 21:71–72

35. Alhoniemi E, Himberg J, Parhankangas J, Vesanto J (2005) SOM
Toolbox, Copyright (C) 2000–2005 by Esa Alhoniemi, Johan
Himberg, Juha Parhankangas and Juha Vesanto http://www.cis.
hut.fi/projects/somtoolbox/ Accessed 17 Jan 2008

36. Magdziarz T, Lozowicka B, Gieleciak R, Bak A, Polanski J,
Chilmonczyk Z (2006) 3D QSAR study of hypolipidemic
asarones by comparative molecular surface analysis. Bioorg Med
Chem 14:1630–1643. doi:10.1016/j.bmc.2005.10.014

37. Gieleciak R, Magdziarz T, Bak A, Polanski J (2005) Modeling
robust QSAR. 1. Coding molecules in 3D-QSAR - from a point to
surface sectors and molecular volumes. J Chem Inf Model
45:1447–1455. doi:10.1021/ci0501488

38. Mickelson KE, Forsthoefel J, Westphal U (1981) Steroid-protein
interactions. Human corticosteroid binding globulin: some phys-
icochemical properties and binding specificity. Biochemistry
20:6211–6218. doi:10.1021/bi00524a047

39. Westphal U (1986) Steroid-protein interaction II. Springer, Berlin

50 J Mol Model (2009) 15:41–51

http://dx.doi.org/10.1021/jm000986n
http://dx.doi.org/10.1021/jm050185q
http://dx.doi.org/10.1021/ci6001944
http://dx.doi.org/10.1039/b715270a
http://dx.doi.org/10.1039/b715270a
http://dx.doi.org/10.1016/j.bmcl.2006.09.015
http://dx.doi.org/10.1016/j.bmcl.2006.09.015
http://dx.doi.org/10.1021/jm00027a021
http://dx.doi.org/10.1186/1742�4690�4�21
http://dx.doi.org/10.1021/ci049960l
http://dx.doi.org/10.1023/A:1017050508855
http://dx.doi.org/10.1023/A:1027276425268
http://dx.doi.org/10.1021/ci010031t
http://dx.doi.org/10.1021/ci020038q
http://dx.doi.org/10.1021/ci0340761
http://dx.doi.org/10.1023/B:MODI.0000006536.02970.f0
http://dx.doi.org/10.1023/B:MODI.0000006536.02970.f0
http://dx.doi.org/10.2174/1386207043328292
http://dx.doi.org/10.1016/S0097�8485(00)00064�4
http://dx.doi.org/10.1021/ci600295z
http://dx.doi.org/10.1073/pnas.91.8.3147
http://dx.doi.org/10.1073/pnas.050585797
http://dx.doi.org/10.1021/ac960321m
http://dx.doi.org/10.1021/ac960321m
http://dx.doi.org/10.1002/jcc.20831
http://prac.us.edu.pl/<zchorg/ddt
http://www.tripos.com/
http://www.mol-net.com/software/corina/
http://www.mol-net.com/software/corina/
http://dx.doi.org/10.1021/jp980230o
http://dx.doi.org/10.1021/jp980230o
http://www.cis.hut.fi/projects/somtoolbox/
http://www.cis.hut.fi/projects/somtoolbox/
http://dx.doi.org/10.1016/j.bmc.2005.10.014
http://dx.doi.org/10.1021/ci0501488
http://dx.doi.org/10.1021/bi00524a047


40. Dunn WJ III, Wold S, Edlund U, Hellberg S, Gasteiger J (1984)
Multivariate structure-activity relationships between data from a
battery of biological tests and an ensemble of structure descrip-
tors: the PLS method. Quant Struct Act Relat 3:131–137.
doi:10.1002/qsar.19840030402

41. Wagener M, Sadowski J, Gasteiger J (1995) Autocorrelation of
molecular surface properties for modeling corticosteroid binding
globulin and cytosolic ah receptor activity by neural networks. J
Am Chem Soc 117:7769–7775. doi:10.1021/ja00134a023

42. User and Reference Manual Quasar 4.0 http://www.biograf.ch
Accessed Jan 2004

43. Robinson DD, Winn PJ, Lyne PD, Richards WG (1999) Self-
organizing molecular field analysis: A tool for structure-
activity studies. J Med Chem 42:573–583. doi:10.1021/
jm9810607

44. Rucker C, Rucker G, Meringer M (2007) y-Randomization and its
variants in QSPR/QSAR. J Chem Inf Model 47:2345–2357.
doi:10.1021/ci700157b

J Mol Model (2009) 15:41–51 51

http://dx.doi.org/10.1002/qsar.19840030402
http://dx.doi.org/10.1021/ja00134a023
http://www.biograf.ch
http://dx.doi.org/10.1021/jm9810607
http://dx.doi.org/10.1021/jm9810607
http://dx.doi.org/10.1021/ci700157b

	Receptor...
	Abstract
	Introduction
	Data sets and methodology
	Data sets
	Molecular modeling and docking
	Comparative molecular surface analysis
	Iterative variable elimination IVE-PLS method
	Drug design toolbox

	Result and discussion
	RI s-CoMSA for the steroid benchmark series
	RI and RD CoMSA for chemopreventive sulforaphanes

	Conclusions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


